To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed.

نویسندگان

  • Patrick T Martone
  • Mark W Denny
چکیده

Previous studies have hypothesized that wave-induced drag forces may constrain the size of intertidal organisms by dislodging or breaking organisms that exceed some critical dimension. In this study, we explored constraints on the size of the articulated coralline alga Calliarthron, which thrives in wave-exposed intertidal habitats. Its ability to survive depends critically upon its segmented morphology (calcified segments separated by flexible joints or ;genicula'), which allows otherwise rigid fronds to bend and thereby reduce drag. However, bending also amplifies stress within genicula near the base of fronds. We quantified breakage of genicula in bending by applying known forces to fronds until they broke. Using a mathematical model, we demonstrate the mitigating effect of neighboring fronds on breakage and show that fronds growing within dense populations are no more likely to break in bending than in tension, suggesting that genicular morphology approaches an engineering optimum, possibly reflecting adaptation to hydrodynamic stress. We measured drag in a re-circulating water flume (0.23-3.6 m s(-1)) and a gravity-accelerated water flume, which generates jets of water that mimic the impact of breaking waves (6-10 m s(-1)). We used frond Reynolds number to extrapolate drag coefficients in the field and to predict water velocities necessary to break fronds of given sizes. Laboratory data successfully predicted frond sizes found in the field, suggesting that, although Calliarthron is well adapted to resist breakage, wave forces may ultimately limit the size of intertidal fronds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kelp versus Coralline: Cellular Basis for Mechanical Strength in the Wave-swept Seaweed Calliarthron (corallinaceae, Rhodophyta)

Previous biomechanical studies of wave-swept macroalgae have revealed a trade-off in growth strategies to resist breakage in the intertidal zone: growing in girth versus growing strong tissues. Brown macroalgae, such as kelps, grow thick stipes but have weak tissues, while red macroalgae grow slender thalli but have much stronger tissues. For example, genicular tissue in the articulated coralli...

متن کامل

Indefatigable: an erect coralline alga is highly resistant to fatigue.

Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather th...

متن کامل

Variation in Anatomical and Material Properties Explains Differences in Hydrodynamic Performances of Foliose Red Macroalgae (rhodophyta)(1).

Over the last two decades, many studies on functional morphology have suggested that material properties of seaweed tissues may influence their fitness. Because hydrodynamic forces are likely the largest source of mortality for seaweeds in high wave energy environments, tissues with material properties that behave favorably in these environments are likely to be selected for. However, it is ver...

متن کامل

Size, strength and allometry of joints in the articulated coralline Calliarthron.

Articulated coralline algae (Corallinales, Rhodophyta) dominate low-intertidal, wave-exposed habitats around the world, yet the mechanics of this diverse group of organisms has been almost completely unexplored. In contrast to fleshy seaweeds, articulated corallines consist of calcified segments (intergenicula) separated by uncalcified joints (genicula). This jointed construction makes calcifie...

متن کامل

Optimum Swept Angle Estimation based on the Specific Cutting Energy in Milling AISI 1045 Steel Alloy

Mechanical machining processes are common manufacturing strategies to re-shape materials to desired specification. The mechanistic approach has revealed the mechanics of the machining processes with various parameters determined. The aim of this work is to investigate the impact of swept angle optimization and their influence on the specific cutting energy in milling AISI 1045 steel alloy. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2008